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4.1 INTRODUCTION
Epigenetics is the study of heritable changes in transcription without altering DNA sequence. Such
changes in the genome constitute the epigenome. Epigenetic modifications may alter DNA accessi-
bility and chromatin structure thereby regulating gene expression. Next-generation sequencing (NGS),
also known as massively parallel sequencing and deep sequencing, has revolutionized genomic
research. In Fig. 4.1, we summarize the epigenomic components and the associated NGS-based
technologies in this chapter.

As an epigenomic regulator, DNA methylation is a chemical modification involved in a repressive
state of the chromatin. It maintains genomic stability by repressing transposons and repeat elements.
The effect of DNA methylation depends on its genomic location in the genome. Biological processes
such as genomic imprinting, X chromosome inactivation, mitotic recombination, and chromosome
rearrangement are closely associated with DNA methylation. In cancerous cells, a global hypomethy-
lated state is known to disrupt mitotic recombination and chromosome rearrangement, causing
aneuploidy and disrupting cellular homeostasis.

The DNA methylation modifications in the genome constitute the methylome. Genome-wide
methylome profiling usually includes analysis steps such as quantification of DNA methylation
levels, identification of differentially methylated regions (DMRs), and visualization of the methylome.
Methylome data can be generated by high-throughput sequencing or microarray-based techniques.
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The data from non-bisulfite-conversion methods, such as methylation-sensitive restriction enzymes
sequencing (MRE-seq) [1] and methylated DNA immunoprecipitation sequencing (MeDIP-seq) [2],
are usually analyzed by comparing the relative abundance of fragments. Whole genome bisulfite
sequencing (WGBS) [3] and reduced representation bisulfite sequencing (RRBS) [4] are the state-of-
art approaches because they provide measurements of absolute methylation level in single-base
resolution. In clinical research, targeted BS-seq and methylation array are particularly useful.

The chromatin comprises DNA packaged with histones forming nucleosomes. The densely packed
regions form the “heterochromatin” and represent the less accessible part of the genome, whereas the
loosely packed regions form the “euchromatin,” which is easily accessible to transcription factors
(TFs). These chromatin states are regulated by histone modifications and the changes in accessibility
affect binding of TFs. Coupled with NGS, chromatin accessibility can be studied using Assay for
Transposase-Accessible Chromatin sequencing (ATAC-seq) to predict nucleosome positioning and
chromatin state. Furthermore, DNA associated with histones or TFs can be profiled by chromatin
immunoprecipitation sequencing (ChIP-seq).

The spatial organization of the chromatin in the nucleus allows physical interaction of different
genomic regions with the help of chromatin-binding proteins. The interactions are frequent in regions
called topologically associating domains (TADs). Deregulation of these interactions is implicated in
genome instability, aging, and cancer [5]. Using chromosome conformation capture techniques
(3C techniques), we can characterize these interactions. 3C techniques in combination with high-
throughput sequencing (Hi-C) can profile these interactions genome-wide.

FIGURE 4.1

Schematic representation of next-generation sequencing technologies for profiling different epigenetic

components. 5-mC, 5 methylcytosine; MeDIP, methylated DNA immunoprecipitation; RRBS, reduced

representation bisulfite sequencing; TF, transcription factor; WGBS, whole genome bisulfite sequencing.
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Small RNAs (sRNAs) have a genome-wide impact on transcriptional and translational regulation
[6]. sRNA sequencing has revealed regulatory roles in growth, development, and differentiation to
cell-fate determination by maintaining chromosome stability and regulating gene expression. Over the
past decade, sRNAs, particularly micro RNA (miRNA) dysregulation has been shown in cancer and in
neurological, cardiovascular, and developmental disorders in various in vitro and in vivo models.

Dysregulation of the epigenome has been linked to a number of diseases and disorders in human,
such as cancer, developmental defects, neuropathy, and cardiomyopathy. Epigenomic studies shed
light on the diverse aspects of a complex regulatory framework. It is therefore important to understand
the experimental techniques, the biology, and the analytical approaches. With rapid advancements in
NGS, the enormous amount of epigenomic data challenges existing computational pipelines and data
management. Understanding the basic principles involved in the study of different epigenetic marks
can be instrumental to meet these challenges. Table 4.1 is a summary of epigenomic regulators and
selected tools for NGS-based studies.

In this chapter, we describe different NGS technologies directed to different epigenomic compo-
nents and mechanisms, including DNA methylation, chromatin accessibility, sRNA regulation, and
chromosomal interaction. For each epigenomic mechanism, we described the common computational
work flow and the available bioinformatics resources. Additionally, we illustrate applications of each
technology with a few case studies.

4.2 PREPROCESSING DATA FROM NEXT-GENERATION SEQUENCING
Here we focused on Illumina-based data, which are wildly used in the research societies. The data
output from an Illumina sequencer are often in FASTQ format, including four lines per record (also
called “read”):

• line1. Starting with “@” followed by sequence identifier
• line2. The raw sequence letters A, C, G, T, and N
• line3. Starting with “þ” followed by sequence identifier
• line4. The quality values called Phred score of the sequence in line2

When multiple libraries were pooled in a sequencing run, a demultiplexing process is required to
separate the reads according to their barcodes. One can use customized tools for demultiplexing, such
as bcl2fastq [7] and BaseSpace [8]. The demultiplexed reads are then submitted to a quality control
step. FastQC [9] is a popular software package for performing quality control of reads, and information
such as base composition, quality per base, and overrepresented sequences will be demonstrated.
According to the FastQC report, one can decide the parameters for the following adapter-trimming
process; detect overrepresented sequences in the FastQC report tend to be 30 and 50 adapters, and
bases with low quality, e.g., Phred score < 30, should be trimmed. Cutadapt [10] is a well-known
adapter-trimming tool.

4.3 READ ALIGNMENT
Preprocessed reads are to be aligned to the reference genome. The NGS data discussed in this chapter
are to be aligned directly against the genome sequences, except for BS-seq, because the original
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Table 4.1 Epigenome Regulators and Selected Tools for NGS-Based Studies

Epigenomic Marks NGS Technology Tools/Pipeline/Databases

DNA methylation Whole genome bisulfite
sequencing
Reduced representation bisulfite
sequencing

Aligner:

· BS-Seeker2 (wraps Bowtie, Bowtie2)

· Bismarck (wraps Bowtie, Bowtie2)

· Bisulfighter (wraps LAST)
Generalized profiling:

· MethGO

· BSPAT

· GBSA
DMR finding:

· BSmooth

· methylKit

· BiSeq

· methylPipe

Methylated DNA
immunoprecipitation sequencing
(MeDIP-seq)

Aligner:

· Bowtie2

· BWA

· SOAP
Peak-calling:

· MACS

· MACS2
DMR finding:

· MEDIPS

DNAeprotein
interaction

Chromatin immunoprecipitation
assay-sequencing (ChIP-seq)

Narrow peak-calling tools:

· Unique Peaks

· Homer

· MACS2 bdgdiff
Broad peak-calling tools:

· MACS bdgbroadcall

· ODIN-bin

· RSEG

· SICER

· diffReps-nb
Tools for both types of peaks:

· ChIPComp

· DiffBind

· MAnorm

Chromatin
accessibility

ATAC-seq
FAIRE-seq
DNase-seq
MNase-seq

Peak-calling tools:

· MACS

· ZINBA

· Hotspot

· Homer

· F-seq

· R module ATAC-seq pipeline

· DESeq2

RNA regulation Micro RNA sequencing
(miRNA-seq)

Aligner:

· Bowtie2, BWA, Maq, Stampy, NovoAlign,
SOAP, GNUMAP

Databases:

· miRBase

· miR2Disease

Continued
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sequences have been chemically modified therefore converted genome sequences are to be used (see
Section 4.4). Bowtie2 [11], BWA [12], SOAP [13], and LAST [14] are available short read aligners.
SAM file (or its binary format BAM file) and MAF (multiple alignment format) are output file formats,
which store the alignment information such as the genomic position, mismatch, and alignment score.
One can extract “uniquely mapped” reads from alignments with SAMtools [15], that is, to exclude
reads aligned to multiple positions. For BS-seq, ChIP-seq, and ATAC-seq, duplicated reads with
completely same sequences could be removed at this step to avoid potential bias from polymerase
chain reaction (PCR) amplification. After read alignment, ChIP-seq, sRNA-seq, and ATAC-seq
pipelines include one step “peak calling” with different requirements according to the data specificity.

4.4 PROFILING DNA METHYLATION
4.4.1 DNA METHYLATION
DNA methylation refers to adding one methyl group to the 5th carbon of a cytosine (C), forming
5-methylcytosine (5mC). The methyl group is transferred to cytosine by DNA methyltransferases
(DNMTs). DNA methylation can occur in the symmetric CG and CHG contexts and in the asymmetric
CHH context (“H” represents A, C, or T). In mammalian genomes, where methylation mainly occurs
on CG dinucleotides, DNMT3 de novo methylates cytosine [16,17], and DNMT1 maintains DNA
methylation during cell division [17,18]. Methylation at a promoter region may repress gene
expression through altering the chromatin structure or blocking transcription initiation [19].

Several biological processes are known to be regulated by DNA methylation. During mammalian
development, genomic imprinting is a phenomenon through which genes are expressed in a parent-of-
origin manner, that is, one of the two parental alleles is silenced by DNA methylation [20]. Loss of
imprinting of IGF2 (insulin-like growth factor 2) is associated with BeckwitheWiedemann syndrome

Table 4.1 Epigenome Regulators and Selected Tools for NGS-Based Studiesdcont’d

Epigenomic Marks NGS Technology Tools/Pipeline/Databases

RNA secondary structure prediction

· ViennaRNA Package miRNA target
prediction:

· PicTar

· miRanda
miRNA gene prediction/expression profiling:

· miRDeep/miRDeep2

· miRanalyzer

· miRExpress

· miRTRAP

· miRTools

· miRNAkey

Chromosomal
interaction

Hi-C
ChIA-PET

Contact matrix generation:

· HOMER

· HiTC
Differential interaction analysis:

· diffHic

DMR, differentially methylated region; NGS, next-generation sequencing.
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(BWS) and increases the risk of colorectal cancer [21]. X chromosome inactivation is also directed by
DNA methylation, in which one of the two X chromosomes in a female genome is packed into het-
erochromatin to compensate for the extra dosage [19]. The global hypomethylation in cancerous cells
results in mitotic recombination and chromosome rearrangement, and aneuploid cells emerge [22]. In
plant embryonic development, the endosperm, which contains three copies of each chromosome, is
shown to be hypomethylated compared with embryos [23]. Unlike plants and animals, in which
promoter and gene body methylation marks are common and provide an additional level of gene
regulation, fungi have most DNA methylations occurring in repeat elements and transposons to
stabilize the genome [24].

4.4.2 EXPERIMENTAL APPROACHES
Because DNA methylation plays critical roles in biological processes, several experimental approaches
have been developed to profile DNA methylation. High-performance liquid chromatography (HPLC)
was first used to detect the average 5mC level in a DNA sequence or a genome [25]. Double-stranded
DNA is first hydrolyzed into single nucleotides, dissolved in a liquid solvent and pumped into a
stationary phase column. While passing through the column, C, 5mC and other nucleotides have
different retention times due to different interaction strengths with the static phase. With standard
compounds as references, 5mC can be collected at specific time points and then quantified. This
method is accurate for quantification but cannot differentiate methylation distribution.

With advances in microarray and NGS technology, genome-wide DNA methylation profiling
approaches are therefore doable [26,27]. Restriction enzymes recognize and cut specific sequences.
Even with the same cutting site, the “cutting” can be induced or blocked by methylation. MREs might
only cleave the target sequence of one methylation state and leave another intact. MRE digestion
coupling with NGS (MRE-seq) can reveal the location of CpG sites of the same methylation state
within any pair of two recognition sites [1]. This method estimates the relative DNAmethylation levels
and is limited to the number and distribution of the CpG-containing recognition sites.

Affinity enrichment-based methods use methyl-CpG-binding domain (MBD) proteins or 5mC-specific
antibodies (as in MeDIP, methylated DNA immunoprecipitation) to enrich methylated DNA fragments
[2,28]. These fragments can then be evaluated using tiling arrays (MeDIP-chip [29]) or NGS (MeDIP-
seq [2]); that is, the sequence abundance represents the relative methylation level. These methods can
begin with a small amount of starting DNA material, which is important for clinical research and for
obtaining the genome-wide methylation profile. Nevertheless, the results may be biased by an uneven
distribution of CpG sites; moreover, because the resolution of MeDIP-seq is 100e300 bp, the exact
context of methylated site (CG, CHG, and CHH) cannot be distinguished.

Bisulfite treatment of DNA can reveal the methylation status at a single-base resolution of the DNA
sequences and can be used to measure absolute methylation level (percent methylated cells within a
pooled cell population). In the bisulfite sequencing (BS-seq) protocol, bisulfite conversion is the key
step during which the sodium bisulfite chemical converts C into uracil (U) while 5mC is protected by
methylation and remains unchanged. In a subsequent PCR, the U eventually converts into thymine (T)
(Fig. 4.2). When coupled with Sanger sequencing, the methylation state of each C inside a target DNA
sequence is profiled, that is, clonal BS-seq. To profile genome-wide DNA methylation, in WGBS,
genomic DNA is fragmented, end-repaired, A-tailed (add an adenine base to 30end) and ligated with
sequencing adapters [3]. These DNA fragments are then size-selected to compromise the sequencer,
treated with sodium bisulfite, and PCR-amplified; next, the final library is sequenced.
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To investigate the mammalian methylome at a lower cost, Meissner et al. developed RRBS,
which integrates MspI restriction enzyme digestion, bisulfite conversion, and NGS to analyze the
methylation patterns of specific fragments [4]. A size selection of MspI-digested fragments between
40 and 220 bps was found to cover 85% of CpG islands (CGIs), mostly in promoters, which compose
only 1%e3% of the mammalian genome, thereby significantly decreasing the amount of sequencing.
RRBS has been widely used in profiling large-scale samples. Pellegrini et al. performed RRBS in 90
inbred mouse strains; conducted an integrative analysis that included genome-wide expression
levels, proteomics, metabolomics, and 68 clinical traits; and performed epigenome-wide association
studies (EWASs) [30].

Targeted epigenomic sequencing is also available. For instance, Li et al. provided a capture-based
BS-seq to include predefined genomic regions only [31]. This is especially cost-efficient for clinical
research, which has large sample size with definite genomic regions of interest.

4.4.3 METHYLOME
Methylome represents the information of DNA methylation of all cytosines in a genome. The first
WGBS study in 2008 reported the bulk methylation level within the CG, CHG, and CHH contexts in
the Arabidopsis genome; the global methylation pattern in wild-type and methylation-related
mutants; and specific sites associated with gene expression [32]. Lister et al. published the human
methylome in two human cell lines H1-hESC and the differentiated cells from fibroblast IMR90, and
found that in H1-hESC, more 5mCs are found in a non-CG context [33]. Hsieh et al. compared
Arabidopsis endosperm and embryo methylomes and found that virtually the entire endosperm
genome is demethylated, coupled with extensive local non-CG hypermethylation of small interfering

FIGURE 4.2 Principle of BS-seq for Study of the Methylome.

A sequence containing four Cs with an unknown methylation status is bisulfite-converted, PCR-amplified, and

sequenced. C will be read as T, whereas 5mC will remain C. After sequence alignment, the methylation status of

each C inside this sequence can be characterized by comparison with the reference genome. PCR, polymerase

chain reaction.
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RNA (siRNA)-targeted sequences [23]. In 2013, two maize studies reported that the maize genome is
highly methylated, and a specific “CHH island” was found upstream of transcription start sites (TSSs)
[34,35].

In addition to global profiling, case studies that compare the methylation pattern between samples
provide insight on tissue specificity or developmental control. For instance,DNMT1 loss-of-function is
lethal in humans, suggesting DNAmethylation is vital for human embryonic development [36]. Recent
studies performed WGBS in human primordial germ cells [37,38]. The time-lapse recording shows
two waves of demethylation in mammalian germline development, with the first eliminating the
epigenetic memory from the parents and the second removing the memory of early embryonic
development. Some persistent methylated regions are found to escape from the reprogramming,
suggesting they have indispensable roles in development. This result provides evidence that during
early embryonic development, the germline genome lacks methylation protection and is easily affected
by the environment.

4.4.4 BS-SEQ DATA ANALYSIS
Genome-wide DNA methylation profiling is computationally intensive. The general workflow for the
bioinformatics analysis includes data processing, quantification of DNA methylation levels, general
profiling, identification of DMRs, and visualization of the methylome (Fig. 4.3) [27]. The data from

FIGURE 4.3

Analysis pipeline of BS-seq. The reads can be mapped to the reference genome with bisulfite aligners, and the

methylation status of each cytosine inside the genome can be viewed with the genome browser. Postalignment

analysis such as methylation level calculation, correlation with gene expression RNA-seq data, and differentially

methylated region (DMR) finding can then be applied. DEG, differentially expressed gene; DMG, differentially

methylated gene.
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other non-bisulfite-conversion methods, such as MRE-seq and MeDIP-seq, are usually analyzed by
comparing the relative abundance of fragments. Peak-calling tools such as MACS could be used to
identify methylation-enriched regions [39] and DMRs could be identified by comparing peak intensity
with a tool such as MEDIPS [40]. Bisulfite-converted data analysis involves methylation calling at
individual Cs, and statistical testing is required to assess differential methylation between methylomes.
Here, we focus on the bioinformatic analyses of bisulfite-converted data, in particular, WGBS and
RRBS.

In BS-seq, the methylation information from a genome is stored in the FASTQ format. These
bisulfite-converted read records are processed through several steps, including adapter trimming, a
quality assessment of reads, reads alignment, and methylation calling. In particular, mapping bisulfite-
converted reads to the reference genome is challenging for the following three reasons:

1. reduced sequence complexity,
2. asymmetric C-to-T alignments,
3. bisulfite-converted Watson and Crick strands that are not complementary to each other because

bisulfite conversion occurs only at Cs (not Gs).

Bisulfite sequencing aligners are mostly based on one of two algorithms: wild cards and three-letter
algorithms. Wild-card aligners such as Bisulfighter [41] and GSNAP [42] substitute Cs with Cs or Ts in
the reference genome, and reads with both Cs and Ts can be aligned [43]. This method results in a
higher genomic coverage but might be biased toward higher methylation levels. The three-letter
aligners convert all Cs in the reference genome and in the reads into Ts; thus, standard aligners
with lower mappability can be adopted because of reduced sequence complexity [44].

The bisulfite aligner generally outputs alignments, along with the methylation calling information
of each C with sequence context information, e.g., the CGmap file (Fig. 4.4A) in BS-Seeker2 [44].

FIGURE 4.4 Example of Data From BS-seq.

(A) CGmap format from BS-seeker2. (B) Differentially methylated cytosines in serial comprise of differentially

methylated regions (DMRs).
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Users can select sites with sufficient reads coverage (depth, X), calculate the average methylation
level, and generate informative plots using postalignment analysis software tools such as MethGo [45],
BSPAT [46], and GBSA [47]. WGBS and RRBS generate methylation calls at each C as an estimate of
the percentage of cells with methylation. For sample comparison, common sites with sufficient
coverage in all samples are needed. Statistical tests are used to identify differentially methylated loci in
comparisons (Fig. 4.4B). For studies without replicates, Fisher’s exact test is generally adopted. A
comparison with no replicates completely ignores within-group variations, resulting in an over-
statement of the differences and a high false-positive rate.

DMRs are genomic regions that exhibit a different methylation status between two groups of
samples (Fig. 4.4B). Although the prediction of individual loci to be differentially methylated can be
noisy and are strongly affected by the sequencing depth, identifying DMR based on several loci within
a small genome region can provide relatively robust results. Generally, the DMR detection algorithm
adopts a sliding window of several hundreds of base pairs across the genome to survey candidate
DMRs, and the most common approach is to perform Fisher’s exact test CpG-wise [48]. As the
coverage of each sample may be different, only sites covered by all samples are comparable.
Comparing statistics such as T-scores from a t-test or P-value is necessary to test for significant
methylation differences. In the BSmooth software, a beta-binomial is assumed to be the suitable model
for replicated bisulfite sequencing data [48]. The observation is assumed to be binomially distributed,
whereas the methylated proportion at a particular site can vary across samples. The differences at an
individual site can be small but may expand and persist across a region, which is a candidate DMR.
Therefore, DMRs are determined with greater statistical power and are more informative. Several
DMR-finding tools are available, such as methylKit [49], BiSeq [50], and methylPipe [51].

4.4.5 PROFILING 5-HYDROXYMETHYLATION
In addition to 5mC, 5-hydroxymethylation (5hmC) has been shown to be important during mammalian
germline development [37]. 5hmC is produced via the oxidation of 5mC catalyzed by the ten-eleven
translocation (TET) family of proteins [52]. TET-assisted bisulfite sequencing (TAB-seq) has been
used to generate genome-wide 5hmC profiles at a single-base resolution in human and mouse
embryonic stem cells [53]. 5hmC is protected from TET protein-mediated oxidation, whereas 5mC is
oxidized by the Tet1 enzyme to 5-carboxylcytosine (5caC). 5caC and unmethylated C are susceptible
to bisulfite conversion and thus are sequenced as T, whereas 5hmC is sequenced as C. 5hmC data can
be analyzed by the same bioinformatic pipelines as those for BS-seq.

4.4.6 QUALITY ASSESSMENT OF BS-SEQ
To assess the quality of BS-seq data, the methylation level of the spiked-in lambda phage DNA could
be viewed as the “bisulfite unconversion rate” because lambda phage DNA contains no 5mC. Usually
the unconversion rate should be controlled within 1.0%. The correlation of per base methylation level
between technical replicates could be used to verify the concordance of a BS-seq sample.

4.4.7 APPLICATION OF BS-SEQ IN CANCER RESEARCH
Promoter hypermethylation has been shown to be important for tumorigenesis through transcriptional
silencing of tumor suppressor genes. Owing to the low availability of cancer tissue and high cost of
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WGBS, in clinical research it is more often to use methylation array, e.g., Illumina Infinium 450K,
MeDIP-seq, or RRBS to allow more replicates comparison for target methylation sites. For example,
Ashktorab et al. adapted RRBS in colorectal cancer tissues from African-American patients and
identified novel CpG hypermethylation sites in genes involved in Wnt/b-catenin, PI3k/AKT, VEGF,
and JAK/STAT3 pathways [54].

4.4.8 CONCLUSION
DNA methylation can modulate gene expression without any change in DNA sequence. With its
heritability and specificity, the DNA methylation at specific genomic loci can be served as a candidate
biomarker for cancer diagnosis and epigenetic disease prediction. With a reduction in sequencing
costs, in the future, it would be possible to construct personal methylomes, even on a single-cell scale.
Therefore, improved speed and accuracy for large-scale BS-seq data analyses would be critical.

4.5 ASSESSING DNAePROTEIN INTERACTION IN THE
CHROMATIN-CHIP-SEQ

The chromatin consists of DNA wrapped around core histones H2A, H2B, H3, and H4 forming the
beads-on-string structure of nucleosomes. Histones can be chemically modified via lysine acetylation,
lysine and arginine methylation, serine and threonine phosphorylation, lysine ubiquitination, and
sumoylation. These chemical modifications in histones can alter chromatin structures. Together with
TFs, these histone modifications regulate gene expression. ChIP is an effective method to identify
DNA sequences associated with TFs and chromatin modifications. DNA fragments coprecipitated with
the target modification/protein are enriched using antibodies with affinity purification. Previously,
enriched DNA fragments were assayed with a DNA microarray (“chip”), known as ChIP-on-chip.
Recent advances in NGS gives rise to the ChIP-seq technique. Compared with ChIP-on-chip, ChIP-seq
is a relatively precise way to identify DNAeprotein interactions because associated DNA sequences
are sequenced to the nucleotide resolution [55]. ChIP-seq results can be integrated with other genome-
wide data, including gene expression by RNA-seq, DNA methylation by BS-seq, and chromatin
accessibility by ATAC-seq [56e59] for integrative analyses.

The success of a ChIP-seq experiment relies largely on the quality of the sequencing library
construction. One major challenge is to acquire antibodies with high specificity against the target
protein or histone mark because imprecise immunoprecipitation caused by antibody cross-reactivity to
nontargets will lead to background noise and variability. A properly prepared library is composed of
nonredundant DNA fragments that are representative of the genome, and the library quality is crucial
to accurately identify associated DNA sequences. For data computation, a sufficient sequencing depth
(minimal 40e50 million reads) and the use of appropriate peak-calling algorithms are critical to reach
a balance between sensitivity and specificity. Moreover, quality assessment across ChIP-seq replicates
is essential to eliminate noises and false positives.

4.5.1 PREPARING CHIP-SEQ SEQUENCING SAMPLES
Library preparation for ChIP-seq involves the isolation of protein-bound DNA from chromatin,
followed by sonication and purification with immunoprecipitation. After immunoprecipitation, the
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captured DNA fragments are sequenced using NGS. Sample preparation relies on the nature of the
biological question, the choice of antibodies, the material to be sequenced, the fragment length,
and the required depth of sequencing. The ChIP-seq library sample construction involves cross-
linking, cell lysis and fragmentation, immunoprecipitation, cross-link reversal, adapter ligation,
and quality checks. The key steps in ChIP-seq are illustrated in Fig. 4.5A. Approximately
10 million cells are required for a ChIP experiment, although the on-going development of new
techniques such as nano-ChIP-seq and ultralow-input native ChIP-seq can analyze a sample as small
as 1000e10,000 cells [60,61]. At the cell lysis stage, removing cytosolic proteins are essential to
reduce background binding and increase sensitivity. DNA fragments of ideally 150e500 bp are
obtained by sonication or nuclease digestion. Choosing an appropriate antibody is critical to the
success of ChIP-seq because the antibody binding specificity determines whether immunoprecipi-
tation can precisely pull down the target DNA. Based on an assessment conducted as part of
ENCODE projects, more than one-fifth of 200 antibodies failed specificity tests or immunopre-
cipitation experiments.

FIGURE 4.5 ChIP-Seq Identifies Histone Marks and Other ProteineDNA Interactions on the Genome.

(A) Illustration of the key steps of ChIP-seq. Ac, acetylation; 5-mC, 5-methylcytosine; P, phosphorylation.

(B) Analysis of the H3K4me3-enriched regions of differentially expressed genes (DEGs). A heat map showing

differential enrichment of H3K4me3, known as a biomarker for active promoter regions. H3K4me3 is enriched

near the TSS of a set of DEGs (brackets) for both control and treatment samples. H3K4me3 is more abundant in

treatment samples, suggesting that the differential gene expression may be a result of H3K4me3 modulation. Rep,

biological replicates.
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4.5.2 IDENTIFYING DNA SEQUENCES ASSOCIATED WITH PROTEINS OR HISTONE
MODIFICATIONS

ChIP-seq data analysis involves one major stepdpeak calling, a computational method that identifies
genomic regions enriched with aligned reads. These peak regions are the targets of protein binding or
specific histone modifications. An ideal library sample is composed of every target genomic region,
but practically immunoprecipitation or PCR amplification might skew the fragment population.
Bioinformatic tools have been developed for peak calling; some are designed to look for identifying
peaks from sharp, narrow areas of TF binding, whereas others are for broad, large-sized regions
(e.g., ones with histone modification marks) (Fig. 4.6).

Steinhauser and coworkers provide a guideline for choosing tools for ChIP-seq data according to
different data types and biological background [62], see Table 4.2 for a summary of the bioinformatic
tools. Recommended tools for identifying narrow peaks include Homer [63], DiffBind [64], and
ChIPComp [65], whereas tools such as diffReps [66], RSEG [67], and SICER [68] can be used for
broad peaks. Some tools are equipped with options to detect both types of peaks, including ChIPComp,
DiffBind, and MAnorm [69]. Misuse of tools/algorithms can obscure subsequent analyses because
some tools call a large number of small regions, and others aggregate them and report large differential
domains larger than one kilobase. Although sharp, small regions are more reflective of the real size of
TF-binding motifs, misuse of tools that report large domains can result in false findings. Indeed, it was
found that tools such as diffReps or RSEG that have been established to detect differential histone
modifications perform poorly with a TF data set. In a test with diffReps, a tool capable of analyzing
both replicate and nonreplicate data types, less than half of the differential regions were identified
when replicate data were the input, compared with nonreplicate data [62]. Although tools are available
for nonreplicate data (such as MAnorm and Homer; Table 4.2), it is highly recommended to use
replicate ChIP-seq datasets to achieve a consensus for differentially enriched regions as shown in
Fig. 4.5B. The heat map shows differential enrichment of H3K4me3 near the TSS of a set of differ-
entially expressed genes (DEGs) for both control and treatment samples.

The detection of genomic regions with differential read abundance between samples of different
cell types or treatments requires differential peak calling (DPC). Currently available DPC methods use
either a two-stage or a one-stage approach. For two-stage DPC methods, the candidate peak regions
detected in each sample are first determined and later analyzed in the second stage with methods

FIGURE 4.6

Illustration of two types of peaks in the ChIP-seq datasets. Narrow peaks are generally associated with TF binding,

and broad peaks indicate regions with histone modification marks.
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tailored for the differential expression analysis of RNA-seq data. These methods process data from
technical and biological replicates in their second step. Such tools include DBChIP [70] and MAnorm
[69] for two-stage differential peak callers. One drawback of the two-stage methods is that the dif-
ferential peaks for comparison have been predefined in the first stage, and therefore, subtle changes of
smaller peaks within the predefined larger peaks cannot be detected. This may be problematic for
analyzing ChIP-seq data of histone modification. To resolve this issue, one-stage DPC methods can be
applied instead; these methods are based on sliding window approaches or segmentation methods such
as hidden Markov model (HMM) [71e73]; examples for two-stage differential peak callers are
ChIPDiff [71], ODIN [72], and THOR [74]. Currently, window-based DPC methods support the
analysis of technical or biological replicates.

4.5.3 QUALITY ASSESSMENT OF CHIP-SEQ DATA
Accurate peak calling or identification of differential enrichment regions of ChIP-seq is particularly
important because the immunoprecipitation step is prone to variations in experimental conditions and
antibody-binding specificity. The noise level can be substantial enough to mask real signals and result
in fewer peaks. One widely used estimate of the signal-to-noise ratio is the FRiP (fraction of reads in
peaks), which are the proportions of sequencing reads, out of the total reads, that are located in
enriched regions. Usually, a minority of reads aligns to enriched genomic regions (i.e., peaks), and the
remaining reads represent the background. The percentage of reads falling in peak regions, therefore,
serves as an indicator for the success of the immunoprecipitation. The ENCODE project exercises a
minimal 1% FRiP threshold guideline [75].

Table 4.2 Tools Suitable for Different Types of ChIP-Seq Datasets

Signal Type Replicates Tools Significance Measure

Sharp Yes ChIPComp Posterior probability

DiffBind P-value or FDR

No MAnorm P-value

Unique peaks -

Homer FDR or P-value

MACS2 bdgdiff log10 likelihood ratio

ODIN-bin P-value

Broad Yes ChIPComp Posterior probability

DiffBind P-value or FDR

diffReps-nb P-value

No MAnorm P-value

Unique peaks e

MACS bdgbroadcall log10 likelihood ratio

RSEG e

SICER FDR

Tools are categorized according to the shape of the signal (Narrow or Broad Peaks) to be detected and presence of replicates.
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An appropriate control data set is essential for ChIP-seq data analysis predominantly because of
varied DNA fragmentation during sonication and antibody cross-reactivity. Moreover, some open
chromatin regions can be overrepresented in sonicated samples. Common control samples are either an
“input” or a “mock” ChIP reaction. An input control is extracted DNA that has been cross-linked and
fragmented but not immunoprecipitated. A mock control is prepared using an antibody that binds to
nontarget, nonnuclear proteins. Nonspecific immunoglobulin G (IgG) antibodies are often used in the
mock reaction; therefore, the mock control is also called the “IgG control.” Moreover, an internal
control as a spike-in aliquot of chromatin from a different species might be important to precisely
determine the normalization factor and enable comparisons across samples. In addition to controls,
ideally, at least two biological replicates should be included in ChIP-seq experiments to access the
reproducibility by measures such as the Pearson correlation coefficient. Statistical approaches such as
the irreproducible discovery rate (IDR) can also be used to identify consistent signals among replicates
[76,77]. Because significant peaks are likely genuine signals for the underlying biology, they are
expected to have a high consistency between replicates; however, peaks with low significance are more
likely noises and are expected to have low consistency. IDR measures the consistency of peaks of
both high and low significance between two samples from replicates. The value of IDR describes the
expected probability that a signal is false.

4.5.4 CHIP-SEQ IN CANCER RESEARCH
Mutations in enzymes involved in epigenetic modulation are frequently observed in cancer; in fact,
approximately one-third of genes driving tumor development are related to chromatin structure and
function [78]. For instance, changes in histone H3 methylation were found to be associated with
tumorigenesis [79]. KDM3A (lysine demethylase 3A) modulates histone methylation by demethy-
lating mono- or di-methylated H3K9 (lysine 9 of histone H3) [80,81]. To study the dynamic response
to epigenetic regulation of KDM3 and its role in prostate cancer development, ChIP-seq was used to
profile histone methylation [79]. The peak-calling step used MACS [39] and ChIPseek [82], which
uses scripts from BEDTools [83]. The comparison of the control and the KDM3 knockdown showed
specific loss of KDM3A ChIP-signals but significant gains of H3K9me1and H3K9me2 signals,
indicating a global histone demethylation effect on H3K9. Moreover, tumor formation in an orthotopic
prostate tumor was abolished in the knockout. This example demonstrated that ChIP-seq can serve as
an effective tool to elucidate how epigenetic dysregulation can drive cancer development, providing
potential therapeutic solutions to treat cancer.

4.5.5 CONCLUSION
ChIP-seq is widely used to investigate epigenetic features and to map TF-binding motifs. This tech-
nique has advanced our understanding of disease mechanisms and provides insights into potential
clinical applications. To benefit fully from what ChIP-seq can offer, integrative analysis with another
data type or multiple types is key to discover underlying regulatory networks that may lead to novel
therapies or drugs. Future development in quality antibodies and validation in immunoprecipitation
specificity would greatly improve the accuracy of analyses. Establishment of protocols that require a
small amount of tissue or even down to single-cell levels while maintaining high resolution is another
critical development for ChIP-seq applications in medicine.
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4.6 ANALYSIS OF THE SMALL RNA COMPONENT OF THE EPIGENOME
Small ribonucleic acids (sRNAs) are short, noncoding RNA molecules of approximately 18e30
nucleotides [84]. They control vital cellular processes from growth, development, and differentiation
to a cell-fate determination by maintaining chromosome stability and regulating gene expression.
sRNAs are largely posttranscriptional regulators of gene expression that elicit translational repression
and/or translational cleavage of target RNA [85]. sRNA deregulation therefore disrupts cell physiology
with implications proven in cancer, neurodegenerative disorders, viral infections and a host of other
diseases. With advances in sequencing technologies, sRNAs can be applied to disease etiology,
developing diagnostics and designing therapeutic targets [86].

4.6.1 BIOGENESIS OF SMALL RNA CLASSES
Mature sRNAs are formed by the action of RNA processing enzymes such as Drosha and DICER. The
Argonaute proteins bind to sRNAs and recognize specific target mRNAs through sequence comple-
mentarity, which then leads to mRNA cleavage or translation inhibition. A 50 monophosphate and 30
hydroxyl group at the termini differentiates sRNAs from mRNAs. Many classes of sRNA are formed
from larger RNA precursors. The common classes include miRNA and siRNA, which are functionally
similar but differ in their biogenesis [87]. miRNAs are 18e24-nt in length, generated by the action of
DICER on endogenous single-stranded RNA (ssRNA) with imperfectly base-paired hairpin structures.
miRNA forms from one arm of the stem-loop that contains loops to yield ssRNA usually in excess of
their complement. A conserved base-pairing occurs between the 30 UTR of mRNA and the 50 region of
miRNA, called the seed region.

The siRNAs are generated from perfectly base-paired double-stranded RNA (dsRNA) precursors of
both exogenous and endogenous origin. Each strand of the RNA duplex forms complementary siRNA
in equal abundance. Both miRNA and siRNA interact with the 30 UTR of target RNAs and silence
cytoplasmic mRNA by one of three ways: mRNA degradation, translational repression, or accelerated
mRNA decapping. In the light of high-throughput sequencing, novel classes of sRNAs still remain to
be discovered.

4.6.2 NEXT-GENERATION SEQUENCING OF SMALL RNA
Northern blotting, qPCR, microarray, etc., have shown diverse roles of sRNA in cell differentiation,
growth/proliferation, migration, apoptosis/death, metabolism, and defense [88]. However, NGS
achieves single-base resolution [89,90], allowing us to differentiate between related species of sRNA.
NGS-based techniques are cost-effective because of reduced manpower and necessary reagents. The
cost of sequencing the human genome continues decreasing in recent years. Because of its massively
parallel approach, it allows over 300 Gb of DNA to be read on a single run in a relatively short time.
The accuracy of NGS may be attributed to the intrinsic use of overlapping reads, as each read is
amplified multiple times during library preparation before sequencing. The greater the number of
reads overlapping a region, the higher is the coverage, making it more reliable. The data obtained
from miRNA sequencing can be used for expression profiling, identification of sequence isoforms
and novel miRNAs, prediction of potential miRNA genes and miRNA targets, and functional
prediction.
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4.6.3 PROFILING MICRO RNAS
The miRNA-seq is the use of NGS to sequence miRNAs. Libraries for miRNA-seq are prepared using
protocols and kits available from Illumina, Applied Biosystems (ABI) SOLiD, New England Biolabs
(NEB), and TriLink Biotechnologies [91]. Large RNAs are removed after a size selection step. The
library prep relies on specific ligation of adapters to miRNA molecules coupled with the size selection
of the miRNA enriched from a pool of sRNA on agarose gel. Adapter ligation to the 30 and 50 termini is
followed by adapter-specific PCR amplification. For multiplexing sequencing, index sequences inte-
grated with PCR primers are incorporated.

In general, sRNA expression profiling can be performed using 1e2 M reads, which can be
increased to 10e20 M for identifying novel sRNA [92]. After post-sequencing quality filtering (see
Section 4.2 for detail), reads of at least 15e40 nucleotides after trimming are retained for further
analysis. Repeated reads of identical sequence are collapsed into a single unique read with a note of the
read count. These unique sequences across samples are then merged. The resulting reads are potential
sRNAs. Because sRNA reads are short (16-25 bp for miRNAs), a stringent alignment pipeline is used
allowing only perfect matches using short read aligners.

4.6.4 QUALITY ASSESSMENT OF SRNA-SEQ DATA
Normalization is an essential preprocessing step in the analysis. Its primary purpose is to ensure that
observed differences are because of the biology rather than artifacts resulted from sample handling or
processing. An effective normalization technique minimizes technical and experimental bias without
introducing noise. The absolute distribution plot of the miRNA count data after alignment and
normalization can be visualized using density distribution curves [93]. High consistencies between
the distribution profiles of replicate samples are expected for good-quality sRNA-seq data. In addition,
unique spike-in sequences are often used as an internal control. When sequences were spiked
into a common background reference, the spike-in sequences should be identified as differentially
expressed.

4.6.5 PREDICTION OF MICRO RNA IN THE GENOME
miRNA-seq allows identifying and predicting miRNAs in the genome, profiling their expression,
elucidating disease associations, and discovering other novel miRNAs. Homology modeling or ab
initio methods are commonly applied. Homology-based methods rely on available and experimentally
validated miRNAs, which limits the prediction of novel miRNAs. The ab initio approach overcomes
this limitation. Both the homology and the ab initio approaches use algorithms for predicting RNA
secondary structures. Homology-based tools such as MapMi [94] map known miRNA to genomes
taking sequence similarity and RNA secondary structure into account. The ViennaRNA package [95]
predicts RNA secondary structures by generating scores, ranks, and graphical outputs of possible
hairpins. Additionally, phylogenetic conservation and filtering of other known sRNA classes for
detection improve prediction. Ab initio miRNA prediction requires only the primary sequence and
operates in a single-sequence or multiple-sequence mode. The single-sequence mode assumes a
mature miRNA is formed from the stem of a hairpin with many possible WatsoneCrick pairs and few
loops. Alternatively, the degree of conservation of the sequence in related species, the presence of
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potential cleavage sites of Drosha and DICER, and the thermodynamic stability of the hairpins
strengthen the prediction. RNAmicro [96] is a tool that detects secondary structures in a multiple
sequence mode. The predicted miRNA can be further validated by evaluating the target mRNAs.

4.6.6 PREDICTING MICRO RNA TARGETS
The expression of miRNA is highly dependent on time, tissue-type, biotic/abiotic stimulus, or
developmental stage. miRNAs are therefore potential markers for disease diagnosis. The miRNAs bind
to target mRNAs with complementary sequences. These targets may be predicted computationally
considering the seed region of the miRNA. The methods may be sequence, structure, or homology
based. Because of the short length of miRNAs, sequence complementarity and homology-based
predictions yield high false-positives. Structural predictions consider the thermodynamic stability of
the miRNAemRNA duplex along with sequence complementarity. PicTar [97] relies on miRNA
conservation across species to identify targets using multiple sequence alignments of the 30UTR of
eight vertebrates. However, programs such as MicroTar [97] do not rely on conservation but use
thermodynamic energies of miRNAemRNA duplexes for predictions. Among other tools, RNA22
[98] searches for patterns in the 30UTR to predict targets.

To identify miRNAs, sequences can be aligned with annotated miRNAs searched against the latest
version of databases such as miRBase [99] or other sRNA databases. miRBase is the gold standard
database that catalogs over 28,645 miRNA entries representing hairpin precursor miRNA expressing
about 35,828 miRNA products in 223 species. miRBase provides read data-associated annotated
miRNAs, allows the filtering of reads by experiment and count and searches for miRNAs by tissue-
and stage-specific expression. A manually curated database of miRNA in various human diseases
is provided by miR2Disease [99]. Each entry in miR2Disease contains detailed information on a
miRNAedisease relationship, including miRNA ID, disease name, a brief description of the
miRNAedisease relationship, the miRNA expression pattern in the disease state, the detection method
for miRNA expression, experimentally verified miRNA target gene(s), and related literature. The
sRNA-RNA-seq alignment program miRge [100] uses a three-step approach to handle unaligned reads
from miRNA-seq. First unaligned reads are aligned to full hairpin miRNA library >25 bp. The
resulting unaligned sequences are aligned to other noncoding RNA libraries such as tRNA, snoRNA,
and rRNA, allowing for a single mismatch. The rest of the unmatched sequences are aligned to coding
RNA allowing only identical matches. Finally, to identify isomiRs, unaligned sequences are again
aligned to known miRNAs with less stringent criteria to identify isomiRs. In this approach, alternative
alignments to other sRNAs are excluded before classifying the sRNA as isomiR, making it not only
accurate but also rapid.

A list of common tools available for miRNA data analysis is shown in Table 4.3. miRDeep [101] is
limited to organisms such as human, with known reference genomes. miRanalyzer [102] has been
widely applied in different organisms via a Web server tool to detect all known miRNAs annotated in
miRBase, finding perfect matches against other libraries and predicting novel miRNAs. miRExpress
[103] can be used when the reference genome sequence is not available. miRscan helps identify
miRNA genes conserved in more than one genome [104]. miRseeker relies on conservation of
sequence and structural features across species to predict miRNAs [105]. DSAP [106] is an automated
multitask Web service that facilitates comparative miRNA analyses, such as differential expression,
cross-species distribution, and phylogenetic distribution. mirTools [107] provides detailed annotation
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for known miRNA and allows determination of the relative expression level of all miRNAs, which can
be illustrated using a scatter plot. miRNAkey [108] has a user-friendly graphical user interface that can
be used for visualizing differentially expressed miRNAs in paired samples. Among other tools
available to study sRNAs, iSmaRT (integrative Small RNA Tool-kit) focuses on predicting novel
piRNAs and their RNA targets [109].

4.6.7 APPLICATION OF MIRNA-SEQ IN CANCER RESEARCH
Genetic and epigenetic defects in sRNA, particularly miRNAs, or their processing have been linked to
many human diseases [110]. Over the past decade, there have been increasing reports of miRNA
dysregulation in cancer, neurological, cardiovascular, and developmental disorders. In vitro and in vivo
models have shown global miRNA repression in cellular transformation and tumorigenesis [86]. Calin
and coworkers [111] associated chronic lymphocytic leukemia (CLL) with the deletion of a section of
chromosome 13econtaining genes for miR-15 and miR-16. In a majority of CLL cases, these two
genes are deleted or downregulated. In cells derived from breast, prostate, lymphoid, and colorectal
tumors, miR-143 and miR-145 are downregulated [112]. Approximately 60% of human protein-coding
genes are targeted by miRNAs, as predicted by computational methods.

Circulating miRNAs have surfaced as useful biomarkers in early diagnosis and monitoring
cancer progression in a noninvasive way. Serum miRNA-141 has been shown to distinguish prostate
cancer from healthy controls with 60% sensitivity and 100% specificity, confirming sRNAs as
accurate blood-based markers [113]. Likewise, a low ratio of plasma miR-92a/miR-638 levels can be
indicative of leukemia. Taken together, miRNAs have potential use as biomarkers for tumor eval-
uation. However, the prediction of miRNAedisease associations cannot solely rely on experimental
methods because of limitations of time, money, and samples, as well as a lack of specific endogenous

Table 4.3 Tools Available for Micro RNA (miRNA) Data Analysis

miRNA Tool Source (URL) Function

MiRscan http://genes.mit.edu/mirscan/ miRNA gene profiling

MiRFinder http://www.bioinformatics.org/mirfinder/ Expression profiling

miRDeep http://www.australianprostatecentre.org/
research/software/mirdeep-star

Profiling limited to available genomes

miRge https://github.com/BarasLab/miRge Profiling and discovery

miRanalyzer https://github.com/shenlab-sinai/
miRNA_pipeline_for_miRanalyzer

Profiling and discovery

miRExpress http://mirexpress.mbc.nctu.edu.tw/ Expression profiling

mirTools http://www.wzgenomics.cn/mr2_dev/
index.php; http://centre.bioinformatics.
zj.cn/mirtools/

Profiling and discovery

miRNAkey http://ibis.tau.ac.il/miRNAkey/ Expression profiling

ViennaRNA Package https://www.tbi.univie.ac.at/RNA/
documentation.html

RNA secondary structure prediction
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normalizers. Therefore, computational approaches that integrate multiple biological information
to predict miRNAedisease association are critically necessary.

4.6.8 CONCLUSION
NGS is a useful tool for identifying sRNA species using computational analysis. The steps described
for the analysis of sRNA data have been applied in organisms such as Arabidopsis, humans, mice,
Drosophila, Caenorhabditis elegans, etc., to understand their roles and differences in the regulatory
mechanisms among different species of sRNA. The deregulation of sRNAs such as miRNAs is related
to abnormal epigenetic patterns, including DNA methylation and histone modification. For instance,
promoter demethylation induces reactivation of the oncogenes in lung carcinoma, aberrant hyper-
methylation, and inactivation of miR-9-1 in human breast cancer. Elucidating the sRNAs, targets and
interactions can be a useful tool for designing disease diagnostic, prognostic, and therapeutic tools.
RNAi-based mechanisms can be manipulated via RNA interference mechanisms to control the cell
cycle. The universe of novel sRNAs still remains to be discovered and their functions unraveled in the
light of NGS technologies.

4.7 PROFILING CHROMATIN ACCESSIBILITY USING ATAC-SEQ
Chromatin is composed of arrays of nucleosomes, each of which consists of a histone octamer core that
is wrapped by 147 bp of DNA [114,115]. The electrostatic interactions between histone proteins lead
to higher-order compact DNA structures. In general, genomic regions with dense nucleosomes are
more tightly packed (i.e., “closed”) and less accessible to regulatory components that activate gene
expression. On the other hand, genes and their promoters located in nucleosome-depleted (i.e., “open”)
regions are more likely expressed because the DNAs are available to interact with regulators such as
TFs and enhancers that turn on gene expression.

Recent advancement in NGS has led to new techniques that enable genome-wide investigations
of chromatin accessibility [116e118]. Recently, a technique called ATAC-seq was developed [119]
to profile the chromatin accessibility to complement other NGS-based techniques. ATAC-seq
identifies open chromatin regions and putative transcription factor binding sites (TFBSs) at
single-nucleotide resolution [119e123]. Soon after its development, ATAC-seq was used as a pri-
mary method to investigate the human epigenome and regulome in the ENCODE project [124,125].
ATAC-seq requires less amounts of tissue/cells and sample-processing time. For both animals and
plants, 500e50,000 cells are adequate, as opposed to the sequencing of micrococcal nucleasee
sensitive sites (MNase-seq) or DNaseI hypersensitive sites sequencing (DNaseI-seq) that require at
least 1000-fold more material [119,126]. In fact, single-cell ATAC-seq has been demonstrated to be
possible with human and mouse cells [123,127e129], yet not without challenges. In addition to the
technical difficulties of isolating intact cells or nuclei from tissues, computational challenges arise
from variable capture efficiencies and PCR-induced biases. Regardless, this possibility provides a
new approach to meet the challenge of current methods for medical investigation. Current methods
require tens of millions of cells and cell manipulation, such as immortalization or extensive ex vivo
expansion is often a necessity. As a result, the fidelity of investigation can be skewed, and individual
variation cannot be addressed. The nature of high resolution and the low sample quantity required for
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ATAC-seq may greatly spur advancements in personalized health care because individual genome
landscape mapping is now a possibility. Because of its unique ability to analyze single-cell acces-
sibility profiles and its short turnaround time, ATAC-seq is a promising approach for the in-clinic
assessment of personal genome accessibility maps with minute clinical samples.

4.7.1 INVESTIGATING CHROMATIN ACCESSIBILITY
Before ATAC-seq, several sequencing techniques were developed in the past decade for accessibility
profiling. Micrococcal nuclease (MNase) is an endo-exonuclease that digests DNA without bound
proteins or secondary structures. The end product of MNase digestion is a collection of nucleosomes
and hence, MNase-seq results in DNA sequences that are wrapped around the core histones
[130e132]. DNA regions with a high density of MNase-seq reads represent closed chromatin. In
DNaseI-seq, chromatin is treated with the DNaseI endonuclease that preferentially attacks chromatin
regions sensitive to the nuclease [133e135]. Through size selection, reads from open chromatin
regions can be enriched. FAIRE (formaldehyde-assisted isolation of regulatory elements)-seq
[136,137] is a method to identify open regions in the genome. Formaldehyde is used to cross-link
chromatin with proteins, followed by phenolechloroform extraction used to isolate nucleosome
open regions in the aqueous phase. Although MNase-seq identifies nucleosome-dense regions,
DNaseI-seq and FAIRE-seq are methods used to reveal regions of open chromatin. Common technical
hurdles of these techniques include high sample-quantity requirements and processing time. Specif-
ically, MNase-seq requires a minimum of 10 million cells, and the MNase has sequence-specific biases
such as AT-rich regions. DNaseI-seq also requires millions of cells, and the endonuclease used in
DNaseI-seq also has sequence biases, although its cutting bias is better understood. Moreover, the
optimal endonuclease digestion condition must be adjusted for a given cell type and number. With a
similar requirement of a sample amount of millions of cells, FAIRE-seq generally yields a lower
solution.

4.7.2 PREPARING ATAC-SEQ SAMPLES
ATAC-seq uses Tn5 transposase to enrich DNA fragments from open chromatin regions, followed by
NGS. Transposases are enzymes that catalyze transposon movement and preferentially target genomic
regions free from nucleosomes. Tn5 is a mutated hyperactive transposase that can simultaneously
insert adapter sequences into integrated sites, eliminating additional ligation steps before sequencing
(Fig. 4.7). A detailed protocol of library preparation for ATAC-seq has been reported [120]. The major
steps are briefly described below: (1) Cell preparation: collection of intact cells of the target cell type;
(2) Transposition reaction: cell lysis and incubation with Tn5 transposase provided by the Nextera
DNA Sample Preparation Kit from Illumina; (3) PCR amplification: amplification of transposed DNA
fragments, typically five cycles; (4) Quantitative PCR: determination of adequate PCR cycles before
saturation. Excessive amplification results in size bias and skews toward GC-rich sequences; and (5)
Sequencing sample preparation: amplification of the remaining sample from Step 3 for the number of
cycles determined in Step 4. Fragment size is determined by gel electrophoresis. The size distribution
should be 100e800 bp to maintain a high library complexity. Amplicons are purified using a PCR
purification kit before sequencing.
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4.7.3 DETERMINING OPEN CHROMATIN REGIONS USING ATAC-SEQ
An overall analysis plan of ATAC-seq data generated by Illumina sequencers is described here, with a
focus on the peak-calling step. The read length of fragments originated from open regions is primarily
subnucleosomal, approximately <w150 bp. The others are longer than 150 bp with characteristic
nucleosome-associated periodicity; that is, the fragment size distribution of longer reads shows the
enrichment of fragments spanning multiple complete nucleosome units (Fig. 4.7). Removing
mitochondrial reads is an important step in ATAC-seq data analysis because high abundance of
mitochondrial sequences (usually 20%e80%) is a common issue [120,138]. This issue can be alle-
viated by software such as the “view” function of SAMtools [15] after sequencing; reads mapped onto
the mitochondria genome are removed. Alternatively, a mitochondrial read-removing protocol using
the targeted cleavage of DNA fragments with CRISPR/Cas9 has been demonstrated recently [139]. The
ATAC-seq sequencing libraries were treated with Cas9 enzyme and guide RNAs that target the human
mitochondrial genome before sequencing. The results showed that the targeted cleavage step not only
decreased mitochondrial reads by 1.7-fold but also yielded more peaks. Removing mitochondrial
fragments during library preparation increases the sequencing efficiency, which also potentially
reduces the sequencing cost. In most cases, paired-end sequencing is performed for ATAC-seq. Pair-
end 50-cycle reads generally provide accurate alignments, and approximately 50 million mapped
reads are sufficient for human samples [119]. The read start sites require adjustment because Tn5
transposase binds as a dimer and inserts adapters separated by 9 bp [140]. Generally, reads aligning to
the þstrand is offset by þ4 bp, and reads aligning to the �strand are offset by �5 bp [119,122].

FIGURE 4.7

ATAC-seq reveals different regions of the

chromatin structure. Tn5 transposition

fragments chromatin. Open regions are

more susceptible (thick arrow) than closed

regions (thin arrow) are to Tn5

integration. Short sequences (<150 bp)

are transposed fragments from the open

region, and nucleosome-associated

sequences are longer (>150 bp). The

resultant DNA fragments are sequenced,

and reads are aligned onto the reference

genome. TF, transcription factor.
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After mapping, the regions enriched with most reads can be determined by the “peak-calling” step,
which is perhaps the most critical step for chromatin accessibility profiling. In ATAC-seq, the open
chromatin regions are represented as “peaks” where the maximum number of reads are mapped.
ATAC-seq data can reveal both small TFBSs (marked by small peaks) and larger regions of open
chromatin (marked by broad peaks). Broad peaks cover broad regions of enrichment, and localized/
narrow peaks span a small region of approximately 50e500 bp. In most cases, of chromatin acces-
sibility profiling, the target open chromatin regions would be a few kilo base-pairs or longer and are
presented as broad peaks. Open chromatin regions can be inferred from peaks using peak-calling tools.
Common tools for region recognition or peak calling include MACS [39], ZINBA [141], Hotspot
[142], Homer [63], and F-seq [143]. The MACS2 peak caller, originally designed for ChIP-seq, is a
popular tool for ATAC-seq peak calling because of its versatility. It can detect both narrow and broad
peaks and also takes into consideration false discovery rate (FDR) and noise. Similar to MACS2,
ZINBA calls both broad and narrow regions of enrichment across a range of signal-to-noise ratios.
Additionally, it accounts for factors that covary with the background or experimental signal. Hotspot is
a tool for identifying the local enrichment of reads mapped to a genome using a binomial distribution
model. It can detect regions of enrichment of variable sizes and automatically normalizes for large
regions of elevated read levels because of features such as high-copy numbers. Homer was developed
to find short (8e12 bp) motifs in large-scale genomic data and is mostly used for ChIP-seq analysis.
F-seq is a Java package that detects continuous read density estimation and identifies regions of higher
density. F-seq was used to identify broad regions in the ENCODE project, whereas Homer was used to
call localized peaks. Recently, an R module was made available that implements ENCODE’s
ATAC-seq pipeline including F-seq, HOMER, and MACS2 with data visualization using R (available
on GitHub).

DPC measures the relative abundance of the ATAC-seq reads of the same genomic region between
two samples. This can be achieved by merging replicates (bam files) within each group with less
stringent criteria (P-value < 0.1) to obtain union peaks across two biological replicates. The peaks or
the center of peaks on summit with �200 bp can then be used to count reads of each peak from all
replicates independently using featureCounts of the DESeq tool. The resulted matrix can be then fed to
DESeq2 to generate differential peaks [144e146].

4.7.4 QUALITY ASSESSMENT OF ATAC-SEQ DATA
In the preliminary assessment of the sequencing results, composite plots are used to visualize read
abundance as a function of the distance to a particular genetic feature. An increase in read abundance at
positions corresponding to accessible regions indicates a good library. For example, TSSs have been
demonstrated to be accessible chromatin locations. Hence, DNaseI-, FAIRE- and ATAC-seq data are
expected to show an overall increase in abundance at these locations, whereas a decrease at TSSs is
expected for MNase-seq data. For ATAC-seq specifically, an additional size distribution plot of inserts
(i.e., fragments resulting from Tn5 transposition), can be generated using Picard tools. The size dis-
tribution of inserts in a successfully prepared library depicts an array spanning five to six nucleosomal
units.

Reads mapped to mitochondria ideally should be less than 50% to ensure a better outcome from the
peak-calling process. Furthermore, comparing ATAC-seq peaks with existing DNaseI-seq or FAIRE-
seq data to obtain consensus peaks or region will benefit downstream analyses. A comparison of
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sequencing results generated by these techniques for chromatin accessibility is illustrated in Fig. 4.8.
MNase-seq identifies the nucleosome regions. Both DNaseI-seq and ATAC-seq identify nucleosome-
depleted open chromatin regions. Notably, small peaks near the open region in ATAC-seq are
nucleosome-associated sequences included in the library when no size selection is performed. FAIRE-
seq results in a higher noise-to-signal ratio.

When interpreting peak-calling results, it should also be considered that, similar to the exonuclease
used in DNaseI-seq, the Tn5 transposase used in ATAC-seq library construction also cleaves DNA in a
sequence-dependent manner [116,118]. The peak-calling results in bed files generated together with
bedgraphs can be visualized in the Integrative Genome Viewer (IGV) or the UCSC Genome Browser.
BEDTools [83] can then be used to look for additional features on the genome.

FIGURE 4.8 Assessing Chromatin Accessibility With Different Next-Generation Sequencing (NGS) Techniques.

Comparison of read abundance plots generated by different NGS techniques for chromatin accessibility.

MNase-seq identifies nucleosome-associated DNA sequences. Both ATAC-seq and DNaseI-seq identify

nucleosome-depleted open chromatin regions as indicated by the broad peak in the center. Differently from

DNaseI-seq, ATAC-seq results in additional small peaks near the open region; these peaks cover neighboring

nucleosome-dense (closed) regions because size selection is not required for ATAC-seq and hence

nucleosome-associated fragments are included in the library. Short peaks of low abundance in FAIRE-seq

represent the background noise. Arrows stand for cutting/fragmentation sites. PCR, polymerase chain reaction;

TF, transcription factor.
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4.7.5 APPLICATION OF ATAC-SEQ IN CANCER RESEARCH
ATAC-seq has been used to discover the association between cancer subtypes and gene chromatin
accessibility. CLL is a common form of leukemia. The progression of CLL shows great heterogeneity
that is correlated with commonly used clinical biomarker IGHV (Ig heavy chain V-III region VH26)
genes [147,148]. Mutated IGHV genes lead to a less aggressive subtype of CLL (mCLL), and patients
without the mutation show a more aggressive subtype (uCLL). An association of CLL subtypes with
chromatin accessibility of IGHV genes was discovered by Rendeiro and Schmidl [149] using
ATAC-seq. Peak calling was performed with MACS2. Peaks overlapping blacklisted features, i.e., the
artifact signal in certain regions of the genome were discarded. Principal component analysis of
chromatin accessibility, i.e., accessible regions, clearly identified the IGHV mutation status as the
major source of heterogeneity in chromatin accessibility among CLL samples. In addition, it was also
found that the variance and distribution of chromatin accessibility across samples of different subtypes
were highly gene specific, particularly in cases of CLL-linked genes. Furthermore, TFBSs that
coincide with the “dip” of ATAC-seq peaks were identified [119]. This study demonstrated that
ATAC-seq serves as valuable technique to discover the association between disease subtypes and
chromatin accessibility of specific genes, as well as subtype-specific regulatory elements.

ATAC-seq has also been used to discover changes in accessible regulatory regions in cancerous
tissue induced in Drosophila [150]. To identify differentially active regulatory regions, the chromatin
accessibility map was derived from the peak-calling results performed by the MACS2. With the gene
set enrichment analysis, more than 3000 (over-) activated regulatory regions were identified during
tumor development, including promoters, enhancers, and insulators. Together with motif discovery for
candidate TFs, AP-1 and Stat92 E were found to be key regulators. The complementation of the tumor
phenotype by introducing a loss-of-function Stat92 E mutant validated the importance of Stat92 E in
tumor development. In addition, nearby target genes of these newly accessible regions are up- or
downregulated, suggesting that these are functionally significant regulatory changes. In this case,
ATAC-seq was used to identify TFs and regulatory regions driving in vivo tumor development.

4.7.6 CONCLUSION
ATAC-seq is a sensitive method with nucleotide resolution to identify open chromatin regions and
putative TFBSs.When combined with other sequencing results, ATAC-seq serves as a great tool to reveal
chromatin changes in cells and identify new regulatory elements of diseases. With the recently developed
single-cell ATAC-seq technique for human cells, ATAC-seq is a promising new approach for disease
diagnosis because of its potential for in-clinic assessments of personal genome accessibility maps
with minute clinical samples. The development of robust computational tools specifically tailored for
ATAC-seq data analysis is crucial for further advancement and applications of ATAC-seq in medicine.

4.8 CHROMOSOME CONFORMATION CAPTURE
The spatial organization of chromatin can be characterized by 3C techniques. In the nucleus, different
genomic loci can be brought nearby in 3-D space by DNA-binding proteins. Hi-C can profile these
chromosomal interactions genome-wide and identify TADs within which physical interactions are
relatively frequent [151].
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The chromatin state of a cell can be preserved by formalin fixation, during which the protein and
DNA are cross-linked. The chromatin is then digested with a restriction enzyme, and the DNA ends
are filled-in with biotin-labeled nucleotides. After proximal ligation, the DNA ends in the same
TADs are ligated with each other. The following reverse cross-link removes proteins from the DNA,
and the DNA is sheared into 300e500 bp suitable for NGS platform. Biotin-labeled fragments are
pulled down with streptavidin beads, ligated with sequencing adapters, and PCR-amplified. In
addition to Hi-C, chromatin interaction analysis with paired-end-tag sequencing (ChIA-PET) can
determine the genome-wide chromosomal interactions involved in a particular protein used in the
first step of ChIP [152].

The ideal sequencing data from Hi-C and ChIA-PETare “chimeric DNA,” that is, the two ends of
a read come from different genomic loci. Therefore, paired-end sequencing data is required to
decipher information from both ends of a read. After quality control of reads (FastQC and adapter
trimming), read1 and read2 are aligned to the reference genome separately. From the paired
alignments, i.e., SAM files from the Bowtie2 aligner, the genomic loci of each end of a read can be
identified. The intrachromosomal interaction (read1 and read2 come from the same chromosome but
are at a distance) is usually more than interchromosomal interactions (read1 and read2 come from
different chromosomes) in amount. The orientation of read1 and read2 should be noted. The correct
Hi-C read is with read1 and read2 converging to the center of the read, a restriction enzyme cutting
site, and the sum of the distance from read1 and read2 to their closest restriction enzyme cutting site
should be smaller than the read length. To construct the chromosomal contact matrix, tools such as
HOMER [153] and HiTC [154] are developed, and an R package diffHic could detect differential
interacting regions [155].

CTCF as a methylation-sensitive insulator was found to be located on the boundary of TADs and
separated these gene activity coordinated chromosomal units [151]. In 2016, Flavahan et al. provided
evidence that CTCF insulation prevents the activation of oncogenes by distal enhancer elements from
different TADs [156]. The authors also found that mutations in the gene IDH1 (isocitrate dehydro-
genase 1) increase the number of methyl groups on CTCF-binding sites and lose the TAD boundary.
These results suggest that DNA methylation and chromosome conformation are highly associated and
play important roles in gene regulation beyond genome sequence.

4.9 INTEGRATION OF EPIGENOME DATA
Epigenome components together orchestrate gene expression dynamics. For example, transcription-
ally active or silent chromatin regions are often marked by DNA methylation and particular histone
modifications, associating with specific TADs. Feng et al. coordinated ChIP-seq of histone modifi-
cations and Hi-C to reveal that in Arabidopsis local chromosome interactive domains are correlated
with H3K27me3 and H3K9me2 [157]. Furthermore, in mutants of DNA methylationerelated genes,
chromatin interaction patterns are altered. These suggest that DNA methylation and histone modifi-
cation might affect chromosome conformation.

sRNA, DNA methylation, and chromatin states might have confounding effect on gene expres-
sion. Hsu et al. showed that in maize, gene promoter regions are often with a feature of increasing
CHH methylation, open chromatin, and enriched of sRNA target sequences [158]. Integrative
analysis therefore becomes a powerful method to reveal the cross talk among different epigenetic
mechanisms.
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4.10 PREDICTING TRANSCRIPTIONAL FACTOR BINDING SITES WITH
EPIGENOMICS DATA

4.10.1 EPIGENOMIC REGULATION
Gene transcription governs the gene expression network and is orchestrated by the interplay of proteins
located in DNA regulatory regions. Binding of TFs is a key step in regulating gene transcription, which
directly activates/represses gene expression. The 50e1500 bp cis-regulatory elements to which
proteins such as TFs tend to bind and initiate gene transcription are called enhancers. Therefore,
identifying the location of TFBSs and enhancers can help elucidate the gene regulation network. With
the advances in NGS technology, ChIP-seq allows the profiling of proteineDNA binding sites, but this
technique is limited by the requirement for high-quality antibodies and laborious experimental
procedures [159]. Normally, TFBS can be discovered by peak calling from ChIP-seq data, that is, one
experiment for one TF. To save the laborious lab works, more and more research has been published to
use epigenomic data for TFBS prediction, e.g., BS-seq, DNaseI-seq, and ATAC-seq, and several
computational approaches have been therefore developed to predict TFBSs and enhancers in silico
[160].

4.10.2 HIT-BASED TRANSCRIPTION FACTOR BINDING SITE PREDICTION
Typically, TFs bind to short DNA sequences (4e10 bp) across the genome. These short DNA
sequences are TFBSs. ChIP-seq and HT-SELEX (high-throughput systematic evolution of ligands by
exponential enrichment) [161] can precipitate several protein-binding DNA fragments. Position
weight matrix (PWM) is a scoring matrix composed of the log likelihood of each nucleotide in a motif
(TFBS). With multiple sequence alignment, the PWM is derived from the most frequent TFBSs of a
specific TF. Traditionally, PWMs are used in hit-based methods to predict TF-binding. PWM scores
are calculated across the genome, and regions beyond the defined threshold are candidate TFBSs.
Databases such as JASPAR [162] and TRANSFAC [163] contain PWMs of several TFs, and motif-
searching tools such as FIMO [164] implement a statistic model to filter out potential TFBSs in
the query DNA sequences. The construction of PWM is based on sequence specificity; therefore, the
hit-based method only works well for TFs with a highly specific binding motif. Furthermore, the
hit-based method is insufficient to determine whether or not a predicted TFBS is bound by TF in vivo;
in other words, tissue-specific TF-binding events are often ignored.

4.10.3 SITE-CENTRIC TRANSCRIPTION FACTOR BINDING SITE PREDICTION
To further differentiate the tissue-specific TF-binding events, recent studies suggest that TF binding is
associated with epigenetic signatures such as nucleosome positioning [165], histone modifications
[166,167], hypersensitivity to DNaseI (DHS) [134,167] and DNA methylation [168]. The site-centric
method requires the result from hit-based motif search to be integrated with other epigenetic infor-
mation to improve TFBS prediction accuracy and reveal “true-binding” TFBSs. For example, histone
marks H3K4me3 and H3K4me1 highlight active promoter and enhancer elements [169], and active
TFBSs occur between two regions showing high active histone marks (peak-dip-peak pattern) [170].
With this information, Pique-Regi et al. first detected potential TFBSs with motif searching and then
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applied a machine-learning approach to categorizing potential TFBSs into active (with a peak-dip-
peak histone pattern) or inactive (without a peak-dip-peak histone pattern) groups [171]. The same
principle is applied to DNaseI-seq [160,172] data to integrate open chromatin information, as well as
BS-seq data [173] to include DNA methylation as a prior.

4.10.4 SEGMENTATION-BASED TRANSCRIPTION FACTOR BINDING SITE
PREDICTION

DNaseI-seq reveals the open chromatin regions across the genome, which are the regions from peak
calling. On top of the peaks, a peak-dip-peak region called a “footprint” is thought to be caused by TF
binding [174]. In contrast with site-centric methods, which search the entire genome with PWM for
potential TFBSs, segmentation-based approaches screen for the footprints with the HMM or sliding
window [133,137,175]. This step segments the genome into open and closed chromatin and therefore
restricts the searching space for active TF binding. These tools are called “footprinters,” and several
statistical methods are implemented to model or improve footprint calling.

TFBS prediction has been a popular topic in bioinformatics for a long time, and epigenetic
modifications such as chromatin accessibility and histone modification are important factors to
enhance the prediction models. Coupling with new techniques, such as ATAC-seq, and the increasing
amount of data from ChIP-seq and DNaseI-seq in the ENCODE project may enable a better modeling
scenario. Considering data integration, this is a good fit for integrative epigenomic data analysis.

4.11 CASE STUDIES OF EPIGENETICS IN ASSISTED REPRODUCTIVE
TECHNOLOGY

Fertility disorders challenge reproduction. Assisted reproductive technology (ART) uses clinical/
laboratory techniques on gametes and embryos for reproduction. The common techniques include
in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) (Fig. 4.9).

Although the techniques solve fertility issues, several studies also implicate epigenetic defects in
children conceived by ART [176]. Disorders such as BWS, RusselleSilver syndrome (RSS), and
Asperger syndrome (AS) occur from epigenetic errors in imprinting or development [177,178]. The
general procedure involves fusion of the egg and sperm outside the body, which raises the possibility of
epigenetic modifications such as DNA methylation. Epigenetic studies using high-throughput tech-
nologies can reveal ART risk factors with greater accuracy and reliability. This section reviews cases of
ART-associated epigenetic modifications with a special focus on DNA methylation.

4.11.1 IN VITRO FERTILIZATION-ASSOCIATED TRANSCRIPTOMIC CHANGES
Canovas et al. demonstrated differences in genome-wide expression among in vivoeproduced and
in vitroeproduced pig blastocysts using RNA-seq. Single blastocysts were used from one in vivo group
and two in vitro groups. One of the in vitro groups was treated with natural reproductive fluid (Nature-
IVF) and the other without reproductive fluid (C-IVF) [179]. The RNA-seq analysis identified 787
DEGs between the in vitro without reproductive fluid (C-IVF) and in vivo, and 621 DEGs between
in vitro with reproductive fluid (Nature-IVF) and in vivo. All of these genes were significantly different
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in pair-wise comparisons (adjusted P-value < 0.05, fold change of expression > 1.5). There was a
higher number of upregulated genes (534/787d68% in C-IVF embryos and 431/621d69% in Nature-
IVF) than downregulated ones. Among these DEGs, there are 334 genes found in both Nature-IVF and
C-IVF groups versus in vivo, and several of them are associated with epigenetic reprogramming
(down: DNMT3B, DNMT1; up: HDAC5, KDM5A), embryo development (down: CTGF, ING2, KIT,
EZH2; up: BMP4, TLN1, ADAR), cell growth (down: CDCA5, SMC1A; up: RB1, SMARCA2), or
imprinting (up: IGF2BP2, GNAS; down: DIRAS3). These data indicate that in vitro culture alters
embryonic gene expression.

4.11.2 IN VITRO FERTILIZATION-ASSOCIATED DNA METHYLATION CHANGES AT
IMPRINTED LOCI

WGBS of single blastocysts from a pig showed differences between in vivoeproduced and in vitroe
produced embryos [179]. The BS-seq libraries were sequenced at three samples per lane using the
Illumina HiSeq 1000. The number of unique alignments in the samples ranged from 13 million to 42
million. In addition, the global methylation level of CpGs were 15.02 � 3.3%, 11.09 � 2.6%, and
12.33 � 3.6% for the in vitro groups in vitro groups (C-IVF), in vitro groups treated with natural
reproductive fluid (Nature-IVF) and in vivo groups, respectively.

The methylation level of the C-IVF group is the highest, suggesting that ART can lead to changes
in DNA methylation. This result is consistent with a previous study in which ART-derived

FIGURE 4.9

Schematic of the steps in ART for in vitro fertilization (IVF). ICSI, intracytoplasmic sperm injection; ART,

assisted reproductive technology.
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blastocysts had higher methylation levels than did in vivoederived blastocysts [180]. The global
methylation level of <15% suggested few DMRs. For this reason, and to obtain an unbiased
measure of differences in genome methylation, they analyzed a tile size of approximately 3 kb
defined in SeqMonk. SeqMonk enabled the visualization and analysis of mapped data with 150 CpGs
in each tile. After removing tiles without data, 258,885 tiles were extracted from all the samples.

In every pair-wise comparison regions of greater than 5% difference in absolute methylation
between all replicates were identified as DMRs, followed by a t-test (Benjamini and Hochberg
adjusted P < 0.05). The result showed 1660 hyper-DMRs and 1901 hypo DMRs between in vivo
versus Nature-IVF. Furthermore, 2244 hyper-DMRs and 1511 hypo DMRs were found between
in vivo and C-IVF. Among these DMRs, IGF2R, a gene differentially methylated in the C-IVF
group, is related to the large offspring syndrome, as indicated by the analysis using Ingenuity
Pathway Analysis (IPA). After this finding, the researchers focused on targeted imprinted genes.
The DMRs of imprinted genes (igDMRs) are expected to maintain constant methylation before
implantation embryos. This is to ensure reliable imprinted expression of the associated genes
throughout development. In addition, they compared 10 candidates for imprinted region methyl-
ation of the three groups using the chi-square test. The result showed that three imprinted genes
(ZAC1, PEG10, and NNAT) in C-IVF were more methylated (P < 0.05) than in the in vivo groups,
and two (PEG10 and NNAT) in C-IVF were more methylated than Nature-IVF. This observation
indicated that in vitro culture can affect imprinted gene expression and DNA methylation. In
addition, ZAC1 and IGF2R have been reported to be associated with imprinting disordersdtransient
neonatal diabetes mellitus (TNDM) or RSS, respectivelydin patients conceived by ART [181].
Thus, ART can affect the expression of imprinted genes, potentially leading to disorders such as
TNDM and RSS.

4.11.3 IN VITRO FERTILIZATION-ASSOCIATED DNA METHYLATION AT INFERTILITY
GENES

IVF has been shown to have a close association with infertility genes. Castillo-Fernandez et al. [181a]
analyzed whole cord blood cells (WBCs) and cord blood mononuclear cells (CBMCs) from IVF and
non-IVF newborn twins and used genome-wide MeDIP-seq. The libraries were subjected to highly
parallel 50 bp single-end sequencing on the Illumina GAII platform. All sequencing data were
checked for quality using FastQC and then mapped onto the hg19 human genome with BWA after
removing duplicates, using quality score Q10 to filter data and producing the mean relative methyl-
ation score in terms of reads per million (RPM) in 500 bp bins across the genome. Approximately
11,524,145 windows were used for analysis, and more than 50% of the samples with a RPM value of
zero were excluded, resulting in 9,592,803 (WBC) and 9,285,089 (CBMC) bins used in downstream
analyses.

After comparing DNA methylation profiles in WBCs and CBMCs, the result showed that at a FDR
of 5%, there is one significant DMR in WBCs, which was located approximately 3 kb upstream of
TNP1, a gene reportedly linked to male infertility [182]. To explore the biological characteristics of the
top-ranked results in the IVF epigenome-wide analyses, they selected a more liberal threshold of FDR
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of 25%. Forty-six IVF-DMRs were included, the most strongly associated gene is C9orf3, a gene
related to polycystic ovary syndrome and the development of erectile dysfunction after radiotherapy
for prostate cancer in men [183]. The MeDIP-seq result showed that the IVF procedure may change the
DNA methylation of infertility genes.

4.11.4 OTHER ART-ASSOCIATED EPIGENOMIC CHANGES
A study comparing in vivo and in vitro conceived F1 mice using ChIP assay showed an increase of
lysine 4 methylation (dimethyl Lys4-H3) on the paternal chromatin and a gain in lysine 9 methylation
(trimethyl Lys9-H3) on the maternal chromatin at a CTCF site in the imprinting control region [184].
This specific CTCF site also displays de novo DNA methylation on IVF, indicating the link between
histone modification and DNA methylation. In addition to IVF, ICSI has been found to cause aberrant
chromatin remodeling/decondensation of the male pronucleus in different animal species, such as
human [185], monkey [186], and cattle [187].

Recently, the role of miRNAs in IVF has been investigated using a mouse model [188].
Comparative miRNA profiling between embryos resulted from in vivo and in vitro fertilization
revealed that dysregulated miRNAs in IVF were mainly associated with carcinogenesis, genetic
information processing, glucose metabolism, cytoskeleton organization, and neurogenesis. A specific
miRNA, miR-199a-5p, was found consistently downregulated in IVF embryos, and the IVF-induced
downregulation in this miRNAwas shown to directly result in an elevated glycolytic rate, cell lineage
misallocation, and lower fetal survival postimplantation.

NGS has been efficiently used to reveal changes in the transcriptome and epigenome in
ART-conceived individuals. The discovered epigenomic changes in DNA methylation, histone
modification, chromatin structure, or miRNA point to potential risks of the ART procedure. By
understanding mechanism by which the epigenome is affected by the current methods, changes in
the procedure can be made to prevent undesired consequences and to improve the success rate of
ART.

4.12 SUMMARY
More and more NGS approaches have been developed to study epigenome modifications. Most
approaches introduced in this chapter (Table 4.1) compute sequencing read abundance to determine
relative quantifications of the epigenomic feature; these methods include MeDIP-seq, ChIP-seq,
ATAC-seq, FAIRE-seq, DNase-seq, MNase-seq, miRNA-seq, Hi-C, and ChIA-PET. On the other
hand, the bisulfite sequencingebased methods in profiling DNA methylation (WGBS, RRBS)
analyzed the fractions of reads that are methylated as an absolute quantification of the percentage of
methylated cells in the sample population.

All contents in this chapter together demonstrate that emerging epigenomic NGS data make the
gene regulatory network more complete, and bioinformatics not only helps us address biological
questions from these data but also makes predictions. With the rapidly increasing amount of
sequencing data, development of more powerful and integrative bioinformatics tool is a necessity for
effective analysis.
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LIST OF ABBREVIATIONS
3C Chromosome conformation capture
5mC 5-Methylcytosine
ART Assisted reproductive technology
AS Asperger syndrome
ATAC-seq Assay for transposase-accessible chromatin with high-throughput sequencing
BWS BeckwitheWiedemann syndrome
BS-seq Bisulfite sequencing
CGI CpG island
ChIA-PET Chromatin interaction analysis with paired-end-tag sequencing
ChIP Chromatin immunoprecipitation
CLL Chronic lymphocytic leukemia
DEG Differentially expressed gene
DMR Differentially methylated region
DMG Differentially methylated gene
DNMT DNA methyltransferase
DPC Differential peak calling
dsRNA Double-stranded RNA
ENCODE Encyclopedia of DNA elements
FAIRE-seq Formaldehyde-assisted isolation of regulatory elements sequencing
FDR False discovery rate
FRiP Fraction of reads in peaks
Hi-C High-throughput chromosome conformation capture
HMM Hidden Markov model
HT-SELEX High-throughput systematic evolution of ligands by exponential enrichment
ICSI Intracytoplasmic sperm injection
IDR Irreproducible discovery rate
IPA Ingenuity pathway analysis
IVF In vitro fertilization
MeDIP-seq Methylated DNA immunoprecipitation sequencing
miRNA Micro RNA
MRE-seq Methylation-sensitive enzyme sequencing
MNase-seq Micrococcal nuclease sequencing
NGS Next-generation sequencing
PCR Polymerase chain reaction
PWM Position weight matrix
RRBS Reduced representation bisulfite sequencing
RSS RusselleSilver syndrome
sRNA Small ribonucleic acid
siRNA Small interfering RNA
ssRNA Single-stranded RNA
TAD Topologically associating domain
TF Transcription factor
TFBS Transcription factor binding site
WBC Whole cord blood cell
WGBS Whole genome bisulfite sequencing
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